How to Make an Origami Chimera

Abstract

Structural DNA nanotechnology1,2,3,4 and the DNA origami technique5, in particular, have provided a range of spatially addressable two- and three-dimensional nanostructures6,7,8,9,10. These structures are, however, typically formed of tightly packed parallel helices5,6,7,8,9. The development of wireframe structures10,11 should allow the creation of novel designs with unique functionalities, but engineering complex wireframe architectures with arbitrarily designed connections between selected vertices in three-dimensional space remains a challenge. Here, we report a design strategy for fabricating finite-size wireframe DNA nanostructures with high complexity and programmability. In our approach, the vertices are represented by n × 4 multi-arm junctions (n = 2–10) with controlled angles, and the lines are represented by antiparallel DNA crossover tiles12 of variable lengths. Scaffold strands are used to integrate the vertices and lines into fully assembled structures displaying intricate architectures. To demonstrate the versatility of the technique, a series of two-dimensional designs including quasi-crystalline patterns and curvilinear arrays or variable curvatures, and three-dimensional designs including a complex snub cube and a reconfigurable Archimedean solid were constructed.

Access options

Subscribe to Journal

Get full journal access for 1 year

92,52 €

only 7,71 € per issue

All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS  Article  Google Scholar

  2. 2

    Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    CAS  Article  Google Scholar

  3. 3

    Pinheiro, A. V., Han, D. R., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotech. 6, 763–772 (2011).

    CAS  Article  Google Scholar

  4. 4

    Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    CAS  Article  Google Scholar

  5. 5

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar

  6. 6

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Article  Google Scholar

  7. 7

    Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–75 (2009).

    CAS  Article  Google Scholar

  8. 8

    Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  Article  Google Scholar

  9. 9

    Han, D. R. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS  Article  Google Scholar

  10. 10

    Han, D. R. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).

    CAS  Article  Google Scholar

  11. 11

    He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    CAS  Article  Google Scholar

  12. 12

    Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  Article  Google Scholar

  13. 13

    West, D. B. Introduction to Graph Theory (Prentice Hall, 1996).

    Google Scholar

  14. 14

    Gibbons, A. Algorithmic Graph Theory (Cambridge Univ. Press, 1985).

    Google Scholar

  15. 15

    He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    CAS  Article  Google Scholar

  16. 16

    Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS  Article  Google Scholar

  17. 17

    He, Y., Tian, Y., Ribbe, A. E. & Mao, C. D. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 128, 15978–15979 (2006).

    CAS  Article  Google Scholar

  18. 18

    Liu, Y., Ke, Y. G. & Yan, H. Self-assembly of symmetric finite size DNA nanoarrays. J. Am. Chem. Soc. 127, 17140–17141 (2005).

    CAS  Article  Google Scholar

  19. 19

    Sommerville, D. M. Y. Introduction to the Geometry of N Dimensions (E. P. Dutton, 1929).

    Google Scholar

  20. 20

    Wells, A. F. Three-Dimensional Nets and Polyhedra (Wiley, 1977).

    Google Scholar

  21. 21

    Chen, J. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  Article  Google Scholar

  22. 22

    Zhang, Y. & Seeman, N. C. Consruction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    CAS  Article  Google Scholar

  23. 23

    Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  Article  Google Scholar

  24. 24

    Kato, T., Goodman, R. P., Erben, C. M., Turberfield, A. J. & Namba, K. High-resolution structural analysis of a DNA nanostructure by cryoEM. Nano Lett. 9, 2747–2750 (2009).

    CAS  Article  Google Scholar

  25. 25

    Shen, Z., Yan, H., Wang, T. & Seeman, N. C. Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. J. Am. Chem. Soc. 126, 1666–1674 (2004).

    CAS  Article  Google Scholar

  26. 26

    Geary, C., Rothemund, P. W. K. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    CAS  Article  Google Scholar

  27. 27

    Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    CAS  Article  Google Scholar

  28. 28

    Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    CAS  Article  Google Scholar

Download references

Acknowledgements

This research was partly supported by grants to H.Y. and Y.L. from the National Science Foundation (nos. 1360635 and 1334109), the Army Research Office (no. W911NF-12-1-0420) and the National Institutes of Health (no. R01GM104960). H.Y. was supported by the Presidential Strategic Initiative Fund from Arizona State University. The authors thank M. Madjidi for proofreading.

Author information

Affiliations

  1. The Biodesign Institute and the Department of Chemistry and Biochemistry, Center for Molecular Design and Biomimetics, Arizona State University, Tempe, 85287, Arizona, USA

    Fei Zhang, Shuoxing Jiang, Yan Liu & Hao Yan

  2. Department of Chemistry, Purdue University, West Lafayette, 47907, Indiana, USA

    Siyu Wu, Yulin Li & Chengde Mao

Contributions

H.Y., Y.L. and F.Z. conceived and designed the experiment. F.Z., S.J., S.W. and Y.L. performed the experiments. F.Z., S.J., S.W. and Y.L. analysed the data. All authors discussed the results. All authors contributed to the writing the manuscript.

Corresponding authors

Correspondence to Yan Liu or Hao Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Jiang, S., Wu, S. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotech 10, 779–784 (2015). https://doi.org/10.1038/nnano.2015.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1038/nnano.2015.162

Further reading

  • Increasing the size and complexity of discrete 2D metallosupramolecules

    • Heng Wang
    • , Yiming Li
    • , Na Li
    • , Alexander Filosa
    •  & Xiaopeng Li

    Nature Reviews Materials (2021)

  • DNA origami single crystals with Wulff shapes

    • Yong Wang
    • , Lizhi Dai
    • , Zhiyuan Ding
    • , Min Ji
    • , Jiliang Liu
    • , Hang Xing
    • , Xiaoguo Liu
    • , Yonggang Ke
    • , Chunhai Fan
    • , Peng Wang
    •  & Ye Tian

    Nature Communications (2021)

  • Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions

    • Amanda K. Pearce
    • , Thomas R. Wilks
    • , Maria C. Arno
    •  & Rachel K. O'Reilly

    Nature Reviews Chemistry (2021)

  • DNA origami

    • Swarup Dey
    • , Chunhai Fan
    • , Kurt V. Gothelf
    • , Jiang Li
    • , Chenxiang Lin
    • , Longfei Liu
    • , Na Liu
    • , Minke A. D. Nijenhuis
    • , Barbara Saccà
    • , Friedrich C. Simmel
    • , Hao Yan
    •  & Pengfei Zhan

    Nature Reviews Methods Primers (2021)

  • Integrated computer-aided engineering and design for DNA assemblies

    • Chao-Min Huang
    • , Anjelica Kucinic
    • , Joshua A. Johnson
    • , Hai-Jun Su
    •  & Carlos E. Castro

    Nature Materials (2021)

How to Make an Origami Chimera

Source: https://www.nature.com/articles/nnano.2015.162?proof=t

0 Response to "How to Make an Origami Chimera"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel